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Problem Statement 

In financial world, the market behaves differently when it is in “good” state, “bad” state, or 
“normal” state. One key difference is that the market volatility, which can be represented by the 

volatility of SP500 index, varies by states. Usually, when the market is doing badly, the volatility 
will be higher than it is doing better. Acknowledging which states we are in is important to all 

market participants such as financial institutes and investors, since it was not only a signal to 
what the market will behave, but the volatility predicted by state also can be used for VIX (CBOE 
volatility index) pricing, option pricing and so on. In this project, we are going to use Hidden 

Markov Model to analyze which state the market is in and trying to obtain the volatility of each 
states and using the Black-Sholes formula for option pricing. 

  
Data Source 

The data we will use is the SP500 index from Jan 1st, 1993 to Dec 31st, 2015, which can be 

obtained from Yahoo Finance. When pricing option, another input is the risk free rate. We can 
use the 6 months Treasury bill and it can be obtained from US. Department of Treasury. 

 
Methodology: 

1. Hidden Markov Model 

In hidden Markov model, the system is assumed to be a Markov process with hidden states. The 
underlying states are unobserved and follow Markov chain process with certain transition 

probability. Observations are dependent on the hidden states and visible. 

 
Graph 1: Hidden Markov Model 

Graph 1 shows the process of hidden Markov model with S being the hidden states and y being 
the observations. 
 

2. Black-Scholes Formula 

In Black-Scholes model, stock prices follow geometric Brownian Motion. The price process of the 

underlying stock is  �� = �exp[ቆ� − �ଶʹቇ � + ���] 



where �� is the stock price at time t, � is the initial stock price, μ is the drift, σ is the volatility 

and �� is the Brownian Motion. Taking logarithm on both sides of the equation above we get logሺ��ሻ = logሺ�ሻ + ቆ� − �ଶʹቇ � + ��� 
The logarithm of stock price at time t follows the normal distribution with expectation � logሺ��ሻ =logሺ�ሻ + ሺ� − �ଶ/ʹሻ�. The volatility of stock price σ and the drift μ are assumed to remain constant 

across time in Black-Scholes model. However, in reality, they will change with the overall 

conditions of the stock market. Combined with the Markov chain of economic situation, Black-
Scholes model is modified to be Markov Black-Scholes model, which can accommodate the 

change in states of the underlying financial assets. 
 
 

3. Forward-Backward Algorithm 

The forward-backward algorithm is developed to compute the posterior marginal of the hidden 

state variables based on observations. Since the parameters of the Markov Black-Scholes model 

including the drift μ, the volatility σ and the transition probability P are unknown, we apply 
forward-backward algorithm, which can help to estimate these parameters. The algorithm has 

two passes, in which the forward probability and backward probability are calculated respectively. 
The forward probability is represented as  ߙሺ�ሻ = ℙሺ�ଵ, … , �� , �ܫ = ݇ሻ 
and backward probability is represented as ߚሺ�ሻ = ℙሺ��+ଵ, … , �் , �ܫ = ݇ሻ 
where � is the observation at time j and ܫ stands for the state of the underlying stock at time j. 
The forward probability ߙሺ�ሻ and backward probability ߚሺ�ሻ can be calculated in a recursive way. 
Imposing the probabilities into likelihood functions and transition equations,  �ሺ�ሻ = ℙሺ�� = ݇|�ሻ = ሺ�ሻℙሺ�ሻߚሺ�ሻߙ ∝ ,ሺ�ሻܪ ሺ�ሻߚሺ�ሻߙ = ℙሺ�� = ݇, ��+ଵ = ݈|�ሻ = �ሺߚሺ�ሻܽ,ܾሺ��+ଵሻߙ + ͳሻℙሺ�ሻ  

where ܽ, is the probability of transiting from state k to state l and ܾሺ��+ଵሻ is the probability of 

observation ��+ଵ given state l. Then we can get the estimates of parameters in the normal 
distribution and the transition matrix P. 

 
4. Viterbi Algorithm in Hidden Markov Model 

The Viterbi algorithm is used to find the most likely sequence of the hidden states based on a 

series of observations in hidden Markov model. In this algorithm, the maximum likelihood 
estimation procedure is implemented in a recursive way, which makes it efficient to calculate the 

corresponding probabilities. In each step, the algorithm incorporates one more observation in 
the data series and the complexity is Oሺktሻ if the total number of states is k. The recursive 

process is shown as below. ℙሺ�, �ଵ…�் , �ଵ…�்ሻ = ℙሺ�ሻℙሺ�ଵ…�் , �ଵ…�்|�ሻ = �ௌబℙሺ�ଵ, �ଵ|�ሻℙሺ�ଶ…�் , �ଶ…�்|�ଵ, �ଵ, �ሻ = ⋯ = �ௌబ{Π=ଵ் ܽௌ�−భ,ௌ�ܾሺ�|�ሻ} 
At each iteration, the formula has the similar form and the likelihood function finally becomes a 

product of T terms by induction.  
Taking logarithm on both sides of the equation above, we can simplify it into logℙሺ�, �ଵ…�் , �ଵ…�்ሻ = ݈���ௌబ + Σ=ଵ் ሺ݈��ܽௌ�−భ,ௌ� + ݈��ܾሺ�|�ሻ 



By this transformation, the maximum likelihood problem is converted into the shortest path 
problem. We can adopt Dijkstra’s algorithm or Bellman-Ford algorithm to find the shortest path, 

which is also the most likely sequence of the hidden states. 
 

Expected Result 

In this project, we expect to identify the hidden states of underlying financial assets based on 
the observed movement of prices. First, we should determine the different parameter sets of the 

drift μ and the volatility σ in different states by the forward-backward algorithm. For example, 
during the 2008 financial crisis, the volatility is expected to be large and the drift should be 

relatively low as it was a bad period for the financial market. Second, based on the parameters 
we have, we should uncover the sequence of the hidden states of the underlying stocks or 

indices during the research period and determine which years are the hidden turning points for 
the financial market. 
 

 


